

Introduction to optimal auto-guiding: How to get the most from your set-up

Northeast Astro-Imaging Conference (NEAIC) April 19 & 20, 2018

Suffern NY - USA

Dr. Gaston Baudat

Innovations Foresight, LLC

Deterministic setup tracking errors (open loop)

- Periodic error PE (unless direct drive):
 - Can be learned and partially corrected (PEC), high resolution encoders (on RA & DEC shafts)
- Polar alignment errors θ and drift δ :
 - Minimized by good alignment ($\theta < 1' \rightarrow \delta_{max} \cong 1/3''/min$)
 - Limited by atmospheric refraction to about $\theta \cong \mathbf{1}'$
 - Can be learned/predicated and partially corrected, sky model, auto-quiding.
- Flexure (OTA, mount, focuser/accessories, pier, guide-scope,...)
 - Minimized with a rigid setup and ONAG/OAG.
 - Can be learned & partially corrected, setup model, autoquiding

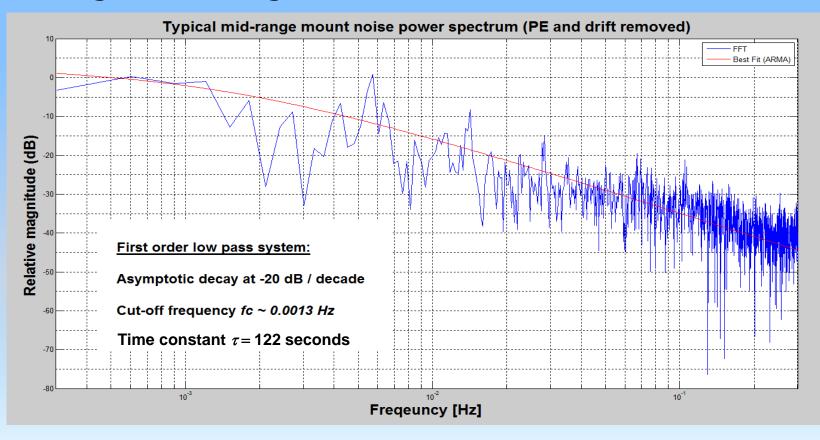
Random setup tracking errors (open loop)

Innovations Foresight

- Mount gear mechanical noise after PEC:
 - Random errors ~0.1" to 1" rms (bandwidth ~ 0.001Hz)
 - Minimized with a good mount (almost gone with direct drive and/or high resolution encoders), auto-guiding
- Wind burst, accidents (bumping mount, cables, mirror flop, ...):
 - Temporary or permanent (hysteresis) step like errors
 - Minimized by dropping frames, auto-guiding
- Unforeseen (Mr. Murphy is very creative and works in team)
 - Minimized by dropping frames, auto-guiding
- All of those errors are **fully correlated across the all FOV**!

Mount mechanical noise (after PEC, no drift)

 Low frequency ("pink") noise (RA in the plot below) (almost gone with high resolution encoders and/or direct drive)



Seeing limited conditions

- Astronomical seeing is the blurring of astronomical objects caused by Earth's atmosphere turbulence
- It impacts the intensity (scintillation) and the shape (phase) of the incoming wave front
- Scintillation is usually not a major problem, at least for exposures above one second. Phase is the main concern, mainly wandering stars, since the wavefront tilt/tip contribution >85% of the total seeing phase Variance

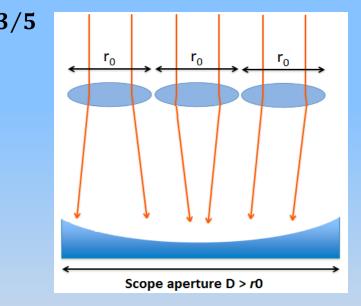
The Fried's parameter

Innovations Foresight

The Fried's parameter r_0 is the **average turbulence cell size**

$$r_0 = \left[\frac{1}{0.423\left(\frac{2\pi}{\lambda}\right)^2 \sec(z) \int_0^\infty C_N^2(h) dh}\right]^2$$

z zenith angle, λ the wavelength and $C_N^2(h)$ is the atmospheric turbulence strength at the altitude h.



FWHM ["]	1	1.5	2	2.5	3
r_0 [mm/inch]	110 / 4.3	74 / 2.9	56 / 2.2	44 / 1.7	37 / 1.5

Diffraction limited images can only be achieved with aperture sizes no more then few inches! Diffraction limited $\rightarrow \frac{D}{-} < 1$ r_0

(c) Innovations Foresight 2016 - Dr. Gaston Baudat

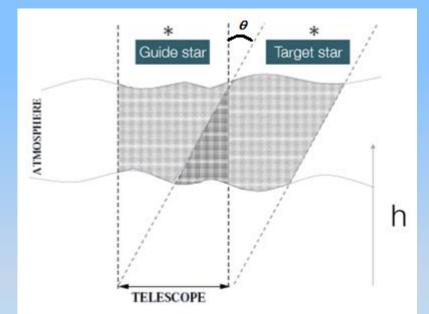
Isoplanatic patch

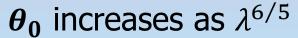
Innovations Foresight

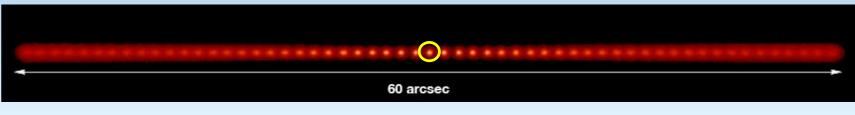
The angle for which the total wavefront error remains almost the same ($\sim\lambda/6$) is known as the isoplanatic angle:

$$\theta_0 \cong 0.31 \frac{r_0}{\overline{h}}$$

 $\overline{h} \sim 5$ km, θ_0 is usually few arc-second across (@550nm): $r_0 = 50$ mm $\rightarrow \sim 0.6''$ $r_0 = 200$ mm $\rightarrow \sim 2.6''$







Isokinetic patch

• The angle for which the wavefront tilt/tip component error remains almost the same is known as the isokinetic angle:

$$\theta_m \cong 0.31 \frac{D}{\overline{h}}$$

 $\overline{h} \sim 5$ km, θ_m is still few arc-second across:

- $D = 200 \text{mm} (\sim 8 \text{ inches}) \rightarrow \sim 3''$
- $D = 1m (\sim 40 \text{ inches}) \rightarrow \sim 13''$
- <u>Conclusions:</u>

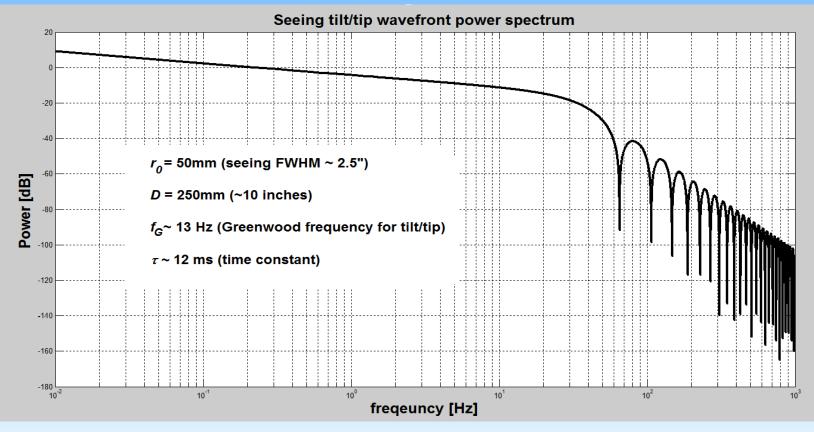
For most setups the seeing **is not correlated across the FOV**! (unless you have a very narrow FOV, arc-second wide)

• \rightarrow Guide star behavior is not correlated with the target

Seeing wave-front tilt/tip (wandering star) power spectrum

Innovations Foresight

- The wave-front tilt/tip seeing component is the dominant effect
- The tilt/tip component is a large ("white") bandwidth noise



(c) Innovations Foresight 2016 - Dr. Gaston Baudat

The different types of noise

- A noise is defined by its distribution (Gaussian, Poisson, ...), its bandwidth B_n [Hz] and its rms value σ_{noise} (noise mean = 0)
- A "white" noise has a very large bandwidth B relative to the system bandwidth B_s , hence $B_n \gg B_s$. There is no correlation, nor predictability, between any sample
- A "pink" noise has a narrow bandwidth B_n relative to the system bandwidth B_s , hence $B_n < B_s$. There is some level of correlation/predictability between samples
- Seeing, electronic, thermal & "shot" noise are often "white" noise, but they are either weakly or not at all correlated across the FOV
- Mount mechanical noise is usually a "pink" noise fully correlated across the all FOV

Mechanical and seeing noise bandwidths *B*_n

Innovations Foresight

- The mechanical noise bandwidth is typical ~0.001Hz, or less, while the seeing (tilt/tip) noise bandwidth is ~10Hz, or more, a ratio ~10,000x
- Both noises have different consequences for auto-guiding
- For guider exposures (sampling periods) ~ $0.1s \le \Delta t \le 30s$:

-> Sampled seeing noise remains an unpredictable "white" noise under all seeing conditions (good or poor):

\rightarrow Can not be corrected

-> Sampled mechanical noise remains a partially predictable "pink" noise, samples are similar from one to the next:

→ Can be corrected

Total open loop noise (PEC, accidents & drift removed)

- The mount mechanical noise and seeing noise are uncorrelated to each other, their variances σ_m^2 and σ_s^2 add in quadrature.
- Therefore the total tracking noise variance σ_{total}^2 (open loop) is: $\sigma_{total}^2 = \sigma_m^2 + \sigma_s^2$
- The total tracking noise rms σ_t is then:

$$\sigma_{total} = \sqrt{\sigma_m^2 + \sigma_s^2}$$

Auto-guiding error (close loop) on a target

Innovations Foresight

• The classical auto-guiding strategy calls for a mount (or AO-tilt/tip) correction c[n] proportional to the guiding error e[n]. At the n^{th} guider frame the close loop correction is:

$$c[n] = -Ke[n]$$

- **K** is known as the "aggressiveness", usually $0 \le K \le 1$
- The guiding error (close loop) impacts the target image quality
- The guiding error is function of mount/setup error & seeing
- There are two basic parameters ("knobs") to control it:
 - 1. Guider exposure time Δt = correction period, usually
 - 2. Aggressiveness **K** (one for RA and one for DEC)

Understanding the auto-guiding (proportional control)

Innovations Foresight

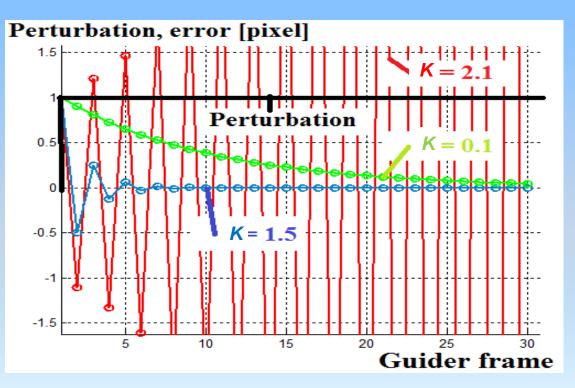
We can use the Z-transform to derive the transfer function
 H(*Z*) of a digital control system, which is similar to the **MTF** in an optical system. It describes how a digital control system responds at disturbances at different temporal frequencies

$$H(Z) = \frac{E(Z)}{D(Z)} = \frac{1 - Z^{-1}}{1 - (1 - K)Z^{-1}}$$

- H(Z) relates any disturbance/perturbation D(Z) applied to the mount/setup to the close loop error E(Z), after correction
- *H*(*Z*) is the same for any disturbance, drifts, steps or noises, therefore the Z-transform is an universal tool, like the **MTF** is.

Auto-guiding system stability (step response diverged)

- H(Z) stable without overshoot for $0 \le K \le 1$
- H(Z) stable with overshoot for $1 < K \leq 2$
- *H*(*Z*) unstable for *K* > 2



Auto-guiding analysis 3 basic situations

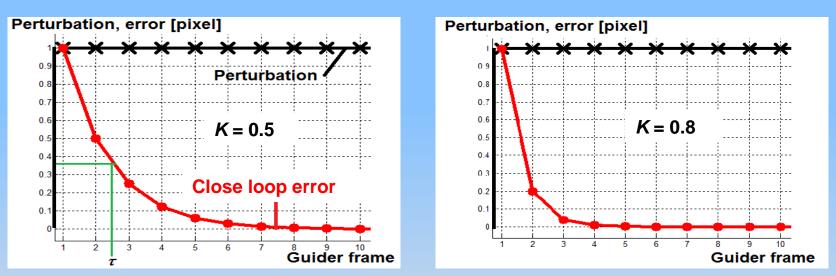
- To understand how a basic auto-guiding algorithms acts on error let's analysis H(Z) reponse for 3 classical perturbations.
- <u>Step response:</u>
 A one time perturbation, a "bump" (no noise, deterministic).
- <u>Drift response:</u> A constant drift perturbation (no noise, deterministic).
- <u>Noise response</u>: A random perturbation, "white", or "pink" noise (average = 0)

<u>P.S:</u> Under the linearly assumption the superposition theorem holds. The total response is the sum of the individual responses.

Auto-guiding The step response

Innovations Foresight

• The plots below show the typical step response (no noise):



- e[n] decays exponentially from guider frame to frame (n).
- The error decayed by ~63% after one time constant τ :

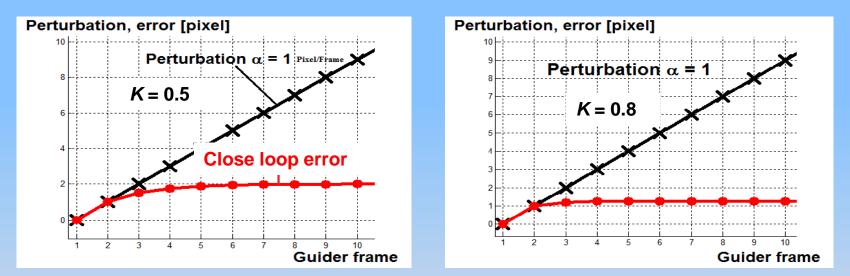
$$\tau = \frac{-\Delta t}{ln(1-K)}$$

 Δt = auto-guiding period, ex. P = 1 px, Δt = 2s, K = 0.5, $\tau \simeq$ 2.9s

Auto-guiding The drift response

Innovations Foresight

• The plots below show the typical drift response (no noise):



- e[n] increases with n, then settles. Same τ than for a step
- The final close loop error $e[n \rightarrow \infty]$ is (a constant bias):

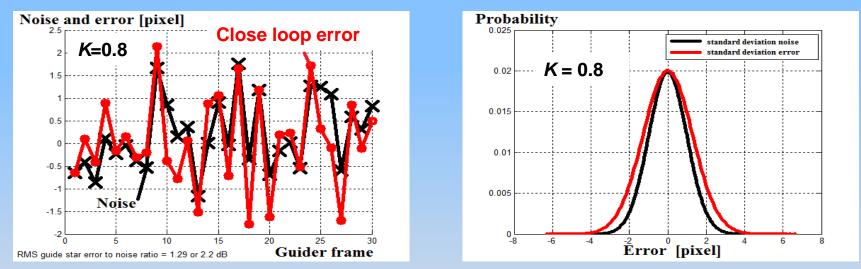
$$e[n \to \infty] = \frac{\alpha}{K}$$

$$\propto$$
 = drift during Δt , ex. \propto = 1 $\frac{\text{pixel}}{\Delta t}$, $K = 0.5$, $e[\infty] = 2$ pixels

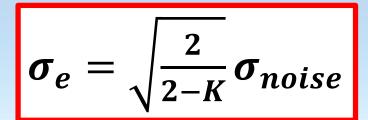
Auto-guiding The "white" noise response

Innovations Foresight

• The plots below show the response to a "white" (broadband) noise of variance σ_n^2 ($\sigma_n = \text{rms value}$):



The error is a noise too with $\sqrt{2}\sigma_n \ge \sigma_e \ge \sigma_n$, its rms value is:

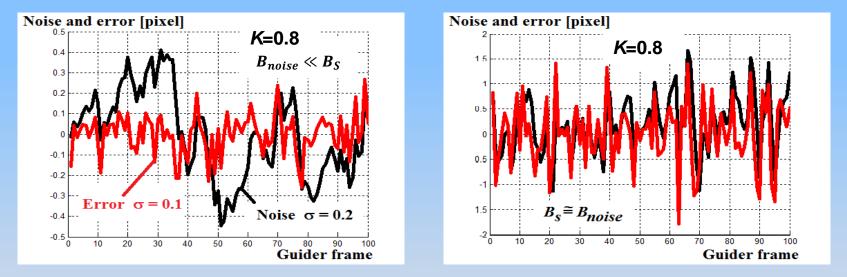


ex. $\sigma_{noise} = 1$ pixel (rms), k = 0.8, $\sigma_e \cong 1.29$ pixels

Auto-guiding The "pink" noise response

Innovations Foresight

The plots below show the response to a typical "pink" noise of variance σ_n^2 (σ_n = rms value):



- The stronger the noise correlation the smaller the close loop error for the same K.
- The mathematics are more complex than for a "white" noise but trackable. (c) Innovations Foresight 2016 - Dr. Gaston Baudat 25

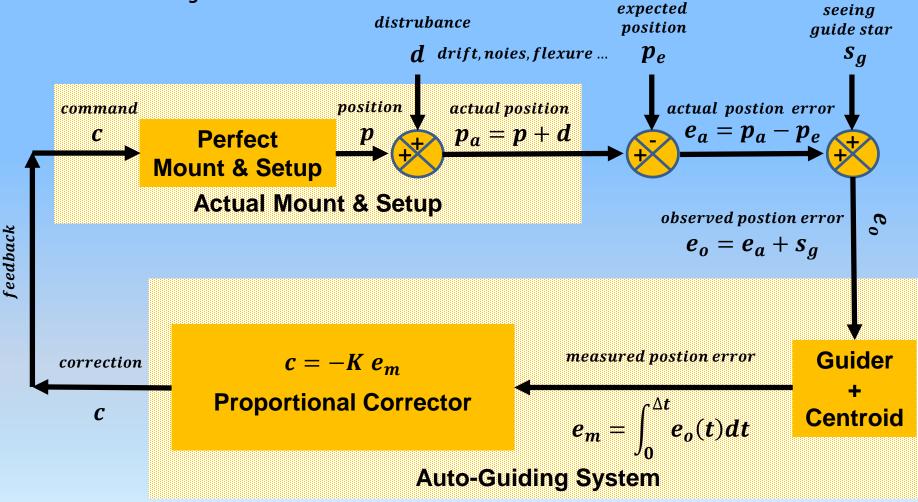
Optimal auto-guiding

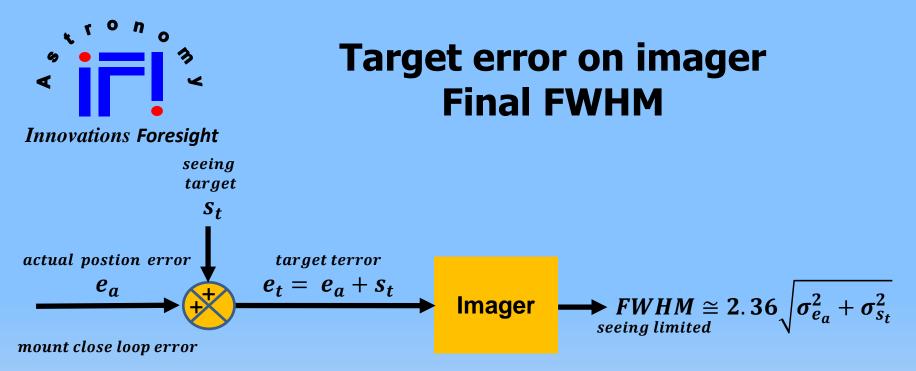
- Stepwise perturbations are eventually fully corrected with a time constant $\tau = \frac{-\Delta t}{ln(1-K)}$, usually few guider frames.
- Drift perturbations eventually settle to a quasi constant close loop error within $\tau = \frac{-\Delta t}{ln(1-K)}$, usually few guider frames. Drift rate changes slowly & is typically just a bias (close loop).
- Noises are the main concern

Optimal auto-guiding aims at **minimizing the total close loop noise rms value** σ_t **on a target**, in other words:

Given a mount performance (σ_m, f_c) & local seeing $(\sigma_s(D, r_0, \lambda, f_G))$ what should be the best Δt and K values for minimizing σ_t ?

Auto-guiding loop: The big picture





- Assumptions/Validity:
 - Imager exposure time >> mount time constant >> 1 minute typically
 - Guider exposure time ~ $0.1s \le \Delta t \le 30s$
 - Seeing limited condition $\rightarrow D > r_0$
 - Under average seeing $2.5'' \rightarrow D > 50mm$
 - Target outside the guide star isokinetic patch $\theta_m = 0.31 \frac{D}{h}$
 - Under average seeing $2.5'' \rightarrow \theta_m \cong 13D$ ["], D in meter
- Mount close loop and target seeing errors add in quadrature

Effect of guider exposure Δt **for** $0.1s \leq \Delta t \leq 30s$

Innovations Foresight

 The guider sensor integrates (averages) the noise during exposure. Acting as a low pass filter with cut-off frequency f_i:

$$f_i = \frac{1}{\pi \Delta t} \cong 0.32 \cdot \frac{1}{\Delta t}$$
 [Hz]

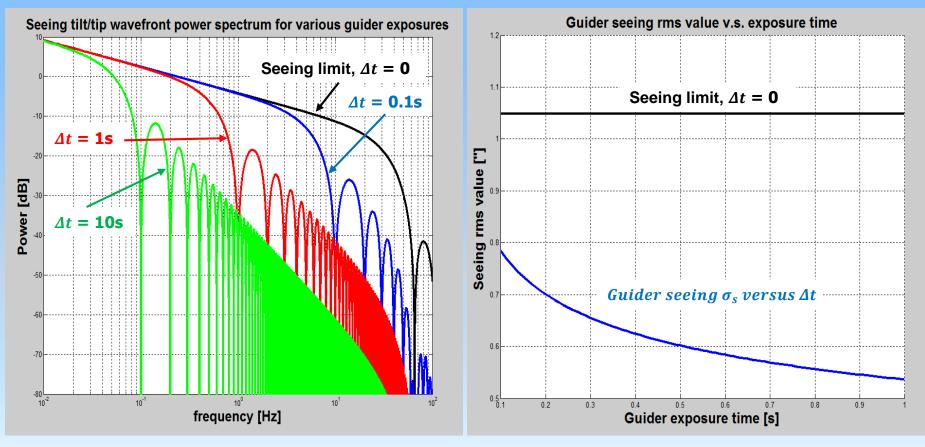
 $0.1s \leq \Delta t \leq 30s \rightarrow 3Hz \geq f_i \geq 0.01Hz$

- Mechanical noise bandwidth is typical around 0.001Hz, hence essentially left untouched (unfiltered) by the guider, $f_c \ll f_i$
- Seeing (tilt/tip) noise bandwidth is typically around 10Hz, or more, hence low pass filtered by the guider, $f_G \gg f_i$
- Those two very different bandwidths provide a way to filter the seeing, which cannot be corrected, while correcting, at least partially, the mechanical noise leading to optimal guiding.

Effect of guider exposure Δt **on seeing power spectrum**

Innovations Foresight

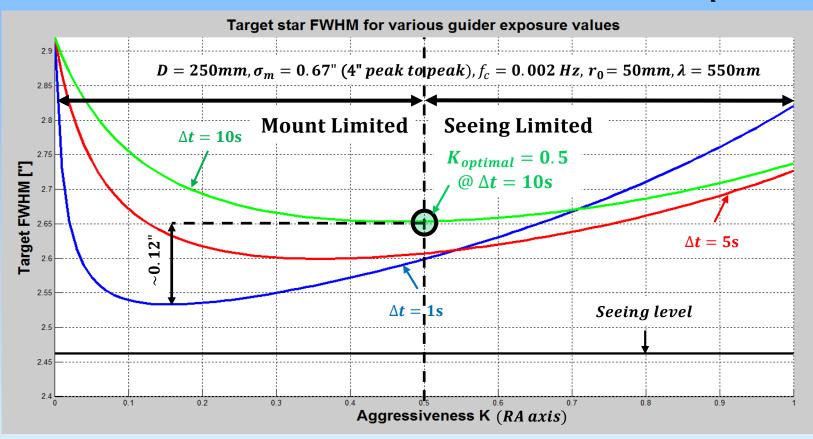
• Longer guider exposures Δt lead to lower seeing rms σ_s contribution values on auto-guiding $(D = 250mm, r_0 = 50mm, \lambda = 550nm)$



Aggressiveness *K* and close loop rms error mid-range mount (4" peak-peak, after PEC)

Innovations Foresight

• For a given mount, seeing & Δt , the total close loop noise error rms value σ_t exbibits a minimum value for some $K_{optimal}$

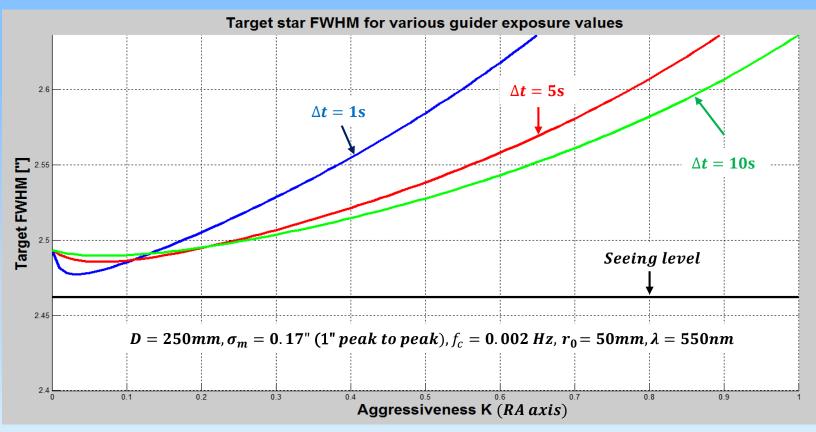


Agg Agg Agg Agg Agg

Aggressiveness K and close loop rms error high-end mount (1" peak-peak, after PEC)

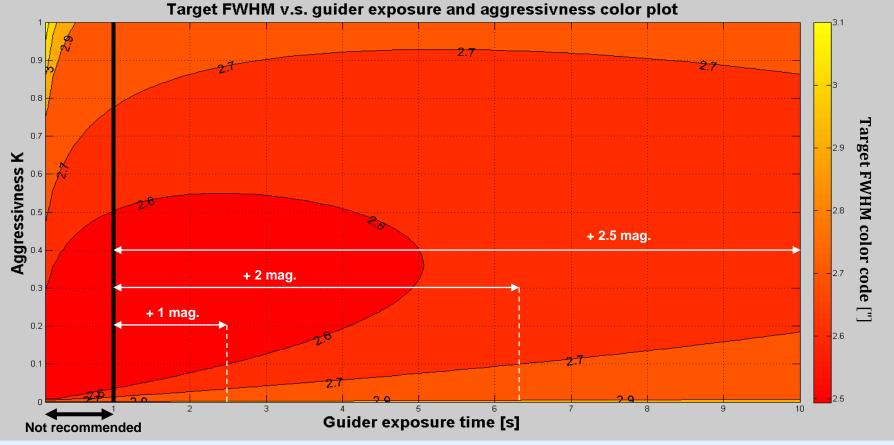
Innovations Foresight

• A lower mount error (σ_m) leads to smaller close loop errors under same seeing. Most guide exposures give the same result.



Target FWHM versus guider exposure time ∆t and aggressiveness K

- Seeing = 2.5", mid-range mount = 4" peak-peak (after PEC)
- Δt < 1s is not recommended (prone to scintillation/aberration)

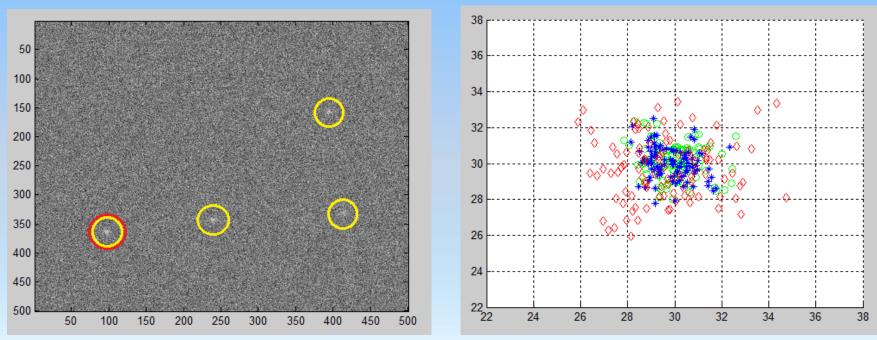


Open loop seeing error scatter plot

Innovations Foresight

Perfect mount open loop error scatter plot (100 samples). SNR=6 dB (2x), 4 stars (same mag.), seeing 2 pixel rms. **Red diamond:** One star centroid. **Green dot:** Full frame guiding ADIC (uses the all frame).

Blue dot: Multi-star centroids (uses 4 star centroids).



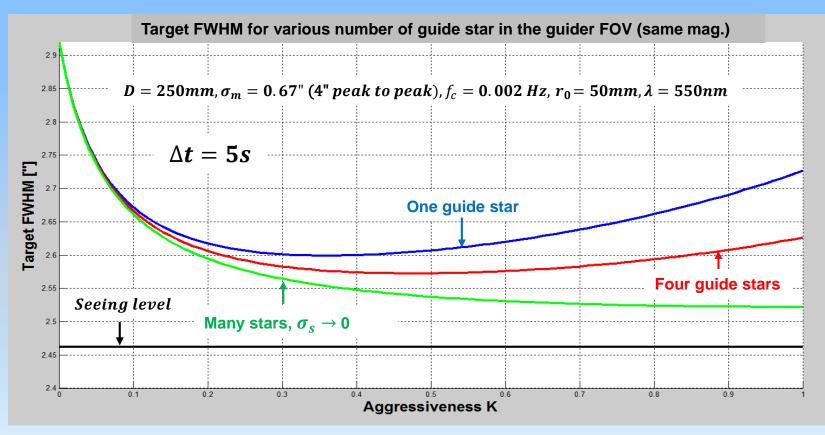
(c) Innovations Foresight 2016 - Dr. Gaston Baudat

Close loop error versus information in guider FOV

mid-range mount (4" peak-peak, after PEC)

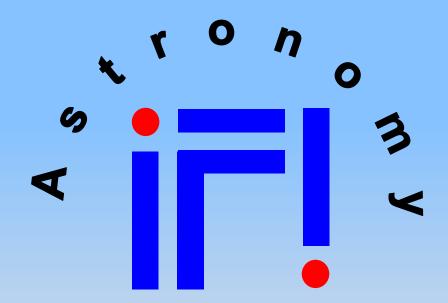
Innovations Foresight

• More information (like many stars) reduces guider seeing rms error σ_s improving target FWHM



Thank you!

Innovations Foresight



Innovations Foresight, LLC

