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Abstract  

Wavefront sensing is fundamental to numerous scientific and industrial applications in optics, particularly in adaptive 

optics (AO). This paper presents a high-speed image space AI-powered wavefront sensing system, based on a patented 

technology known as AI4Wave, that eliminates the need for dedicated wavefront sensors, such as Shack-Hartmann, relying 

solely on fast cameras and AI edge computing devices, specifically an NVIDIA Jetson embedded module in our 

implementation. This module could also be utilized in the future to directly control actuators, streamlining the entire AO 

process. The system captures defocused images of a point source or similar, which are processed by a feedforward artificial 

neural network (NN) trained exclusively on synthetic data [1]. This approach enables real-time phase retrieval, overcoming 

the local derivative limitations of Shack-Hartmann sensors and handling large wavefront or surface errors spanning 

multiple wavelengths. It also provides a unique capability for field-dependent wavefront measurement from a single image 

of multiple sources. Yu Wu et al. [2] proposed a sub-millisecond phase retrieval method that requires two simultaneous 

images for optimal performance and NN training on physical data. However, this approach necessitates retraining 

whenever system parameters, such as f/#, wavelength, or pixel size, are altered. In contrast, AI4Wave employs synthetic, 

normalized data that is agnostic to most optical layout changes, enabling robust and versatile training and validation. 

Combined with off-the-shelf NVIDIA hardware, it offers a ready-to-use solution for industrial deployment. By integrating 

optimized algorithms within modern AI acceleration frameworks, such as NVIDIA TensorRT, and leveraging advanced 

AI edge computers, the system achieves processing speeds of 1000 frames per second or more, effectively providing sub-

millisecond wavefront sensing capability. The minimal hardware setup, consisting only of a camera and an NVIDIA 

module, supports various optical layouts and surface measurement setups. The proposed approach is entirely deterministic. 

AI4Wave phase retrieval leverages feedforward neural network computation, eliminating the need for iterations. This 

approach ensures consistent results and computation times, free from real-time optimization challenges or issues related 

to local minima. Preliminary tests demonstrate high accuracy and repeatability, with exposure times as short as 24 µs, 

effectively capturing environmental perturbations and vibrations. This work provides an industrial-grade, reliable 

foundation for high-speed, high-fidelity wavefront sensing in applications such as AO and similar systems. It also includes 

precise offline benchmarking of wavefront errors, based on millions of samples to ensure deterministic dependable 

performance. 

1. INTRODUCTION 

Image space wavefront sensing (IS-WFS) techniques are methods for determining an optical wavefront directly from 

image data (irradiance), without the need for specialized wavefront sensors or interferometers. These techniques belong 

to the field of computational optics leveraging image processing algorithms to interpret the phase information encoded in 

images, offering a flexible and cost-effective alternative to traditional wavefront sensing methods. 

Typical IS-WFS approaches include: 

1. Phase Retrieval: Reconstructs the wavefront phase by iteratively refining its estimation to match the observed 

image, often using algorithms such as Gerchberg-Saxton (GS) or hybrid input-output methods. Typically, a single 

image is sufficient since the nature of the source is known. Some level of a-priori phase modulation (typically 
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defocus) is required to solve the problem without any ambiguity. The required initial condition impacts the 

performance. 

2. Phase Diversity: Involves capturing multiple images with known phase modulations and jointly solving for the 

wavefront phase that explains all observed images. In this method, the nature of the source may be unknown, 

requiring several images under different modulations to achieve accurate reconstruction. The required initial 

condition impacts the performance. 

3. Curvature Sensing (CS): Although the methods described in 1 and 2 are non-parametric by nature, the CS 

approach is parametric, solving the irradiance transport equation. Roddier and Roddier [3] successfully applied 

this method in adaptive optics for astronomy. With known sources, typically plane waves, a single image suffices 

for phase retrieval, though two images (intra- and extra-focal) are often used to compensate for scintillation. 

The main advantages of IS-WFS include its ability to integrate easily with existing imaging systems and the elimination 

of the need for additional wavefront sensing hardware. This makes IS-WFS particularly attractive for applications where 

space, weight, and cost constraints are critical, such as in space telescopes and portable optical devices. The absence of a 

reference beam and interferometry simplifies the system, enhancing robustness to vibrations, noise, and turbulence. 

Challenges remain, particularly in managing the computational load required for real-time processing. Single image WF 

sensing using phase retrieval algorithms from a known source typically relies on iterative error reduction techniques, such 

as the Gerchberg-Saxton (GS) algorithm. The GS algorithm converges slowly, often with plateaus where the error remains 

nearly constant over many iterations. Iterative joint maximum a posteriori estimation in phase diversity (multiple images) 

and Poisson solvers for CS typically produce approximations rather than exact solutions, with accuracy relying on initial 

conditions. Traditional IS-WFS approaches are inherently iterative, relying on nonlinear optimizations that often lead to 

suboptimal solutions (local minima) and unpredictable runtimes dependent on the initial guess. These limitations are 

critical for high-rate real-time wavefront sensing applications, such as adaptive optics, where rapid solution times are 

essential. Machine learning provides an alternative for IS-WFS, eliminating the need for time-consuming iterative 

processing at runtime. Typically, an artificial NN learns the inverse function mapping the image irradiance to the wavefront 

phase. 

 

                        
 

                         Figure 1. Common approaches used in the context of image-space wavefront sensing 

Proc. of SPIE Vol. 13373  133730G-2



 

 
 

 

          

 

An IS-WFS approach using artificial intelligence was proposed by Baudat [1], enabling phase retrieval from a single 

defocused image, even under noisy conditions. This patented method, known as AI4Wave, offers four key advantages: 

• Requires only a single image. 

• Training and validation rely solely on synthetic (simulated) data. 

• Fast, non-iterative and deterministic processing at runtime. 

• Whole-field wavefront sensing. 

The AI4Wave method relies on an artificial NN trained exclusively on synthetic data, consisting of millions of simulated 

images. This enables the creation of extensive training and validation datasets for accurately solving the inverse problem 

of mapping image irradiance to phase. Aberrated and defocused images are simulated using scalar diffraction theory, and 

the NN processes normalized images [1], ensuring independence from system parameters such as wavelength, aperture, 

focal length, and pixel size. This allows a single NN to function across diverse applications without retraining, as input 

images are normalized beforehand. Originally developed for telescope alignment and active optics in astronomy, AI4Wave 

has also been applied to optical metrology [4], [5]. The NN approximates a unique mathematical function mapping single 

defocused images to their corresponding wavefronts, typically represented as Zernike annular polynomial coefficients. 

During runtime, the NN's non-iterative feed-forward structure eliminates the need for iterations, optimizations, or 

convergence concerns, enabling fast, real-time phase retrieval with deterministic performance and timing. This method 

inherently supports whole-field wavefront sensing from a single defocused image including several sources (like with star 

field). While the scope of this paper focuses on monochromatic sources, extending the approach to polychromatic sources 

is straightforward by calculating diffraction at multiple wavelengths and combining results via quadrature summation. 

Monochromatic calculations remain relevant for filters with bandwidths around 100 nm. Baudat and Hayes demonstrated 

strong agreement between this technique and traditional interferometric methods [6]. Yu Wu et al. [2] proposed a sub-

millisecond phase retrieval method for phase-diversity wavefront sensing, requiring simultaneous acquisition of two 

images for optimal performance. Their NN is trained on physical data acquired with a spatial light modulator (SLM) in a 

double-pass setup, necessitating retraining if system parameters like camera pixel size, f/#, or wavelength change. In 

contrast, AI4Wave relies entirely on synthetic, normalized data, making it independent of most changes in the optical 

layout. This approach enables the creation of large training and validation datasets without relying on physical systems, 

ensuring robust sampling of the inverse function and reliable validation. This, combined with easily available standard 

hardware like an off-the-shelf NVIDIA module, delivers a ready-to-use solution for deployment in real-world industrial 

applications. 

2. METHODOLOGY 

2.1 AI4Wave background and concept 

The far field, intensity distribution of the monochromatic point spread function (PSF) is proportional to the square modulus 

of the two-dimensional Fourier transform of the complex pupil function: 

 

 PSF(u, v) ∝ |ℱ2𝐷{P(x, y)}|2  (1) 

 

The complex pupil function P(x, y) contains information about the shape of the pupil, the transmission function and optical 

phase in the pupil. In general, the complex pupil function is defined as follows: 

 

 P(x, y) = p(x, y)ejφp(x,y)  (2) 

 

where: p(x, y) = pupil amplitude transmission function, 

 φp(x, y) = the pupil phase function = 2W(x,y)/, and 

 W(x,y) = wavefront departure from the reference sphere. 

 

With the required scaling factors, the radial PSF becomes: 
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 PSF(r′) =
I0

(λf)2
|T(ρ)|ρ=r′

λf⁄
2   (3) 

where: 

 I0 = the irradiance in power/area incident on the pupil, 

  = operating wavelength, 

 f = focal length, 

r’= radial coordinate in the focal plane, 

 T() =  ℱ{P(r)} = Radial Fourier transform (Hankel transform) of the complex pupil function. 

Using Equation (3), the monochromatic PSF for any pupil phase distribution can be readily computed. Baudat [1] 

demonstrated the normalization and sampling of input data for broad applicability across optical systems with the same 

NN. Radial annular Zernike polynomials form an infinite orthogonal basis of balanced aberrations. The number of terms 

and the polynomials retained in the subset for the Zernike expansion are typically tailored to specific applications. These 

polynomials are particularly well-suited (but not limited to) for circular apertures, including cases with a central 

obstruction, if present. In this paper, we focus on low-order polynomials commonly involved in alignment tasks and stress 

detection in optical surfaces. These include tilt, defocus, astigmatism, coma, trefoil, and primary spherical aberration, 

amounting to a total of 10 Zernike polynomials. Additional polynomials can be easily incorporated depending on 

application requirements. AI4Wave has been successfully applied to Zernike polynomials up to the 8th radial order in 

some contexts. Table 2 lists the 10 polynomials used for training the NN in this study. The subsequent experiments 

discussed in this paper use circular apertures without any obstruction, therefore 𝜖 = 0. It should be noted that all phase 

information is contained within the defocused image of a point source, except for the piston term (z0 = 0), as absolute 

phase cannot be accessed without a reference beam and interference. This implies that not only higher-order Zernike 

polynomials can be included, but also that surface roughness information is inherently encoded in the image. Accessing 

such information is directly related to the spatial frequency range and signal-to-noise ratio (SNR) of the image. 

 

Name 

 

Index 

  

Radial Annular Polynomials 

    0 < 𝑟 ≤ 1            0 < 𝜖 ≤ 1             0 ≤ 𝜃 ≤ 2𝜋 

Horizontal tilt (X) 𝑍1 (2𝑟/√1 + 𝜖2) cos(𝜃) 

Vertical tilt (Y) 𝑍2 (2𝑟/√1 + 𝜖2) sin(𝜃) 

Defocus 𝑍3 (2𝑟2 − 1 − 𝜀2)/ (1 − 𝜀2) 

Vertical astigmatism 𝑍4 (𝑟2/√1 + 𝜖2 + 𝜖4) cos(2𝜃) 

Oblique astigmatism 𝑍5 (𝑟2/√1 + 𝜖2 + 𝜖4) sin(2𝜃) 

Horizontal coma 𝑍6 [3𝑟3(1 + 𝜖2) − 2𝑟(1 + 𝜖2 + 𝜖4)]/ [(1 − 𝜖2)√(1 + 𝜖2)(1 + 4𝜖2 + 𝜖4)] cos(𝜃) 

Vertical coma 𝑍7 [3𝑟3(1 + 𝜖2) − 2𝑟(1 + 𝜖2 + 𝜖4)]/ [(1 − 𝜖2)√(1 + 𝜖2)(1 + 4𝜖2 + 𝜖4)] sin(𝜃) 

Primary spherical 𝑍8 (6𝑟4 − 6𝑟2(1 + 𝜖2) + 1 + 4𝜖2 + 𝜖4)/ (1 − 𝜖2)2 

Oblique 

trefoil 
𝑍9 [𝑟3/√1 + 𝜖2 + 𝜖4 + 𝜖6] cos(3𝜃) 

Vertical 

trefoil 
𝑍10 [𝑟3/√1 + 𝜖2 + 𝜖4 + 𝜖6] sin(3𝜃) 

 
Table 1. Definition of the Z1 to Z10 annular Zernike terms using the Wyant-Creath numbering convention, 

following Mahajan’s definitions. These are the basic common terms used for generating synthetic data and 

for training the AI system described here with 𝜀 = 0 for the experiments. In some context higher orders terms 

have been considered up to the Zernike radial order 8. 
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2.2 Data generation and training 

The synthetic data, specific to a given optical imaging system, is computed using scalar diffraction theory. In this paper, 

we operate well within the far-field regime where the Fraunhofer approximation applies. Consequently, we use the Fast 

Fourier Transform (FFT) to model the defocused image. To train the artificial NN, defocused images are generated across 

predefined ranges of Zernike coefficients, tailored to the application and aberration budgets. Alternative strategies could 

involve directly sampling an aberrated wavefront, with the NN outputting the sampled wavefront itself rather than Zernike 

coefficients or other aberration terms. In this paper, we adopt a parametric approach, describing the wavefront error using 

radial annular Zernike polynomials. 

The NN training phase employs three datasets: 

a) Learning Dataset: Used to optimize NN synaptic weights, the largest datasets range from 500,000 to several 

million samples or more. 

b) Validation Dataset: Monitors NN generalization performance during training to prevent overfitting, containing 

typically 10,000 to 50,000 samples. 

c) Test Dataset: Assesses the model's post-training generalization capability, performance, bias and accuracy. All 

datasets are generated from identically distributed uniform random variable simulations, spanning the range of 

Zernike coefficients. Typically, from 100,000 to millions of samples. 

Figure 2 below illustrates the basic steps involved in loading and training the neural network. 

 

             
       Figure 2.  The basic steps for loading data and training the NN to estimate (infer) the Zernike coefficients 

Proc. of SPIE Vol. 13373  133730G-5



 

 
 

 

          

2.3 Uniqueness of phase retrieval 

Phase retrieval faces a conjugate inversion ambiguity, as shown from the pupil function P(x, y) cross-correlation, the OTF: 

 

       OTF(ζ, η) = P(x, y) ⊗ P(x, y) = P∗(−x, −y) ⊗ P∗(−x, −y)      (4) 

 

Where * denotes the complex conjugate operation. 

There are 2 pupil functions P(x, y) leading to the same PSF: 

 

                                            P(x, y)         = p(x, y)ejφp(x,y)       (5) 

                                            P∗(−x, −y) = p(−x, −y)e−jφp(−x,−y)  conjugate inversion    (6) 

 

For a circular pupil p(x, y), a real even function, the ambiguity lies in its phase φp(x, y). This can be addressed by 

introducing a known phase modulation, typically a defocus bias (Z3), though other modulations, such as spherical 

aberrations, may be used. Figure 3 illustrates a perfect PSF (left) and aberrated PSFs with +3 waves (center) and -3 waves 

(right) of primary spherical aberration (Z8). In the top row, with no phase modulation (z3 = 0), the aberrated PSFs are 

indistinguishable, indicating phase sign ambiguity. This is resolved in the bottom row by adding a 10-wave defocus (Z3) 

bias, making the aberrated PSFs distinct. A significant defocus bias ensures a known sign despite defocusing accuracy, 

field curvature, sensor tilts, and other errors. Unlike curvature sensing, this method does not require exceeding the caustic 

region. Defocus errors are treated as aberrations, and the NN is trained over a predefined range of defocus values. 

 

             
        
             Figure 3.  The top row corresponds to the in-focus situation (z3=0) with no phase modulation.   

             The two aberrated PSFs, with respectively +3 (center) and -3 (right) waves of primary spherical (Z8),  

             are identical, indicating that the phase sign has been lost. This ambiguity is resolved by adding 10 waves  

             of defocus (Z3) bias, serving as the modulation, as observed in the bottom row. 
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3. EXPERIMENTS 

3.1 Overview 

Several experiments were conducted in the laboratory using both single-pass and double-pass configurations. A NN was 

trained using the AI4Wave approach outlined in section 2, employing up to one million synthetic samples (defocused 

images) to estimate the 10 Zernike polynomial coefficients described in Table 1. The defocused monochrome images used 

for training were 128×128 pixels in size. The defocus bias was set at 2.5 waves RMS, equivalent to 8.66 waves PV, 

assuming a circular aperture without obstructions. To account for pupil apodization caused by the finite size of a 5-micron 

pinhole used in the double-pass optical bench experiment, training samples were generated with variable illumination 

profiles. The illumination across the pupil was modeled as a truncated Gaussian profile, with a maximum drop of -1.08 dB 

at the pupil edge. In both experiments, we used a Basler acA720-520um USB3.0 camera with a resolution of 

728×544 pixels, a pixel size of 6.9 microns squared, and a bit depth of 12 bits. The location of the defocused image of a 

point source was first determined, and then a cropped 128×128 pixels region of interest (ROI) image was sent to the NN. 

When the estimated tilt Zernike coefficients from the NN exceed a predefined threshold, a search operation is triggered to 

recenter the ROI to the source, ensuring continuous tracking. To accommodate for large real-time translations within the 

ROI, the tilt Zernike coefficients' training dynamic range was set to several waves. Since these tilt coefficients are very 

large and used solely for tracking purposes, they are excluded from the results. Only the remaining eight Zernike 

coefficients—defocus, astigmatism, coma, trefoil and primary spherical—are considered here as the relevant aberrations. 

All processing was conducted in near real-time using TensorRT via Python on an NVIDIA Jetson AGX Orin 32GB 

Developer Kit running Jetson Linux (based on Ubuntu), the target machine for standalone applications.  

 

Figure 4 below shows the NVIDIA Jetson AGX Orin Series device and its functional block diagram. These devices offer 

up to 275 TOPS (Tera operations per second) for 8-bit operations (INT8). In our application, we found that a 16-bit 

floating-point format (FP16) provided a good tradeoff between speed, numerical accuracy and stability, delivering up to 

137 TOPS. The Jetson platform is designed to handle multiple video streams and cameras in parallel, enabling its hardware 

resources to run numerous similar neural networks (NNs) simultaneously with comparable real-time performance. This 

level of parallelization allows the retrieval of multiple Zernike coefficient sets, for instance, from a single image featuring 

several sources, supporting real time field-dependent wavefront sensing for applications such as Multi-Object Adaptive 

Optics (MOAO). Alternatively, multiple cameras positioned at different field locations can operate in parallel, each 

capturing also several sources within its view. In addition, AO systems can address very large wavefront error dynamic 

ranges by employing multiple NN models, each optimized for different levels of aberration magnitude, running 

concurrently from a single image. The use of the AI4Wave approach on high-performance devices like the Jetson fully 

harnesses the potential of computational optics at sub millisecond range in a deterministic way. 

                                                        

 

      Figure 4.  NVIDIA Jetson AGX Orin Series device and its functional block diagram 
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The next figure 5 illustrates the data flow and related process workflow diagrams. Experiments have shown that with the 

selected camera and the computational power required for running the NN and related processing, the bottleneck lies in 

the chosen camera sensor readout, even at the camera's shortest exposure time of 24 μs. At this stage, we were not yet 

constrained by the AI4Wave phase retrieval calculations. Therefore, by selecting a faster camera, the system's latency 

could be further improved, with the eventual limit being the NN inference time, essentially the time between submitting 

the image to the NN input and getting the estimated Zernike coefficients.  

 

 
    Figure 5.  Data flow and related processes workflow diagrams 

 

The timeline in figure 6 below illustrates the fundamental timing. Since the camera latency is the bottleneck in the chain 

in this configuration, it operates in free-run image acquisition mode to maximize frame rate. It also natively supports 

overlapping the next exposure with the data readout from the previous one, as illustrated in figure 5 by a rapid transfer to 

an analog buffer, enabling parallelization of the time-consuming A/D conversion. It is set to a mode called “latest image 

only”, designed for real-time, where only a single, most recent acquisition is ever available to the computer in order to 

ensure a minimal latency. Real-time processing prevents frame loss, provided the Jetson is ready to read the next frame. 

For a ROI of 128×128 pixels at 12 bits, the camera readout time (which equals to the sampling period in this configuration) 

is specified as 918 μs, resulting in a maximum frame rate of 1089 fps and allowing a maximum image acquisition exposure 

time of approximately 800 μs. Longer exposure times, near the camera readout time, will extend the sampling period, 

reducing the frame rate accordingly. After each exposure is completed, there is a processing latency that includes the 

camera sensor data readout time, data transfer, and NN inference time before the Zernike coefficients are available for use 

(action). Finally, the sensor response time, defined as the interval from the start of the exposure to the availability of the 

Zernike coefficients, is the sum of the exposure time and the processing latency time. As discussed above, the lower limit 

for the latter is constrained by the NN inference time and with a faster camera it would be possible to approach this limit. 

Essentially, a new set of Zernike coefficients becomes available at each results interval, which equals to the sampling 

period, but with a processing latency time relative to the end of its corresponding exposure. In our implementation, this 

processing latency is primarily dictated by the camera readout time, which could be significantly reduced by selecting 

another one. 
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Figure 6.  Timeline of the overall sensor application implementation. The camera operates on free-run image acquisition 

mode with overlapping acquisitions. In this timeline and our implementation, the NN inference and exposure times are 

shorter than the sensor readout time. 

 

The synthetic data generation, as well as the inverse mathematical model (the NN) linking the irradiance to the Zernike 

coefficients estimations, were implemented in Python using TensorFlow. TensorFlow is an open-source framework 

developed by Google for machine learning and deep learning tasks, focusing on model development, training, and 

deployment across various platforms. The NN was trained with 32-bit floating-point precision (FP32) on a Windows OS 

virtual machine in the cloud. For integration into the Jetson, optimization was performed with different formats for use 

with TensorRT. TensorRT is a high-performance deep learning inference optimizer and runtime library by NVIDIA, 

designed to improve the speed and efficiency of NN inference on NVIDIA GPUs. The best trade-off between numerical 

accuracy, stability and computation time was achieved using a 16-bit floating-point format (FP16). The typical numerical 

errors across the Zernike coefficients and samples between the initial 32-bit TensorFlow precision and the optimized 

TensorRT 16-bit version averaged at or below 0.001 wave RMS of error, consistent with the standards of high-precision 

optical measurement. 

3.2 Performances baseline 

During software and system development, as well as to establish a baseline for system performance, we used simulated 

defocused source images with known aberrations (Zernike coefficients) without the camera attached to the Jetson. This 

approach enabled us to compare numerical accuracies across floating-point formats and optimization strategies chosen for 

integrating the NN on the Jetson using the trtexec utility software provided with TensorRT. It also provided a 

benchmarking baseline for NN inference time. Table 2 below summarizes the main results. The reference column 

represents the TensorFlow environment using the same numerical precision (FP32) as was applied during synthetic data 

generation and NN training in the cloud, with no NVIDIA optimizations. Computing time is not reported here as it is 

irrelevant in this context. The second and third columns correspond to optimized versions using TensorRT with FP32 and 

FP16 floating-point formats for runtime. All calculations in this comparison were performed on the Jetson. TensorRT 

optimization was applied with default parameters, except for specifying the floating-point format and using the highest 

optimization level during model building. This setting employs the most aggressive optimizations to maximize inference 

runtime performance on NVIDIA GPUs. Typically, 100,000 or more samples were used for the statistics. 
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Zernike 

coefficient 

[wave RMS] 

 

TensorFlow 

FP32 

mean 

TensorFlow 

FP32 

standard 

deviation 

TensorRT 

FP32 

mean 

TensorRT 

FP32 

standard 

deviation 

TensorRT 

FP16 

mean 

TensorRT 

FP16 

standard 

deviation 

Defocus 

 

0.0130 0.0110 0.0130 0.0110 0.0130 0.0110 

Vertical 

astigmatism 

0.0093 0.0067 0.0093 0.0067 0.0095 0.0069 

Oblique 

astigmatism 

0.0057 0.0046 0.0057 0.0046 0.0058 0.0046 

Horizontal 

coma 

0.0072 0.0068 0.0072 0.0068 0.0073 0.0069 

Vertical coma 0.0061 0.0041 0.0061 0.0041 0.0066 0.0040 

Oblique trefoil 0.0044 0.0032 0.0044 0.0032 0.0044 0.0032 

Vertical trefoil 0.0074 0.0043 0.0074 0.0043 0.0073 0.0043 

Primary 

spherical 

0.0045 0.0033 0.0045 0.0033 0.0046 0.0033 

Inference time 

[μs] 

NA NA 448 4.96 259 3.66 

Table 2. Zernike coefficient error statistics (wave RMS) and NN inference time (μs) for TensorFlow FP32 floating point 

format (used for training) versus TensorRT FP32 and FP16 floating point formats (optimized versions for runtime)   

Overall, the Zernike coefficient error biases (means) and standard deviations for the test images, unseen during NN 

training, are typically below 0.01 wave RMS. Differences between TensorFlow and TensorRT with FP32 are negligible, 

below 1e-6 wave RMS. With FP16, the differences remain at or below 0.001 wave RMS, making FP16 the selected format 

for subsequent experiments and tests. Other formats such as FP8 or INT8 were not fully tested and could still reduce the 

computation speed without affecting the accuracy. As noted, we used mainly default NVIDIA TensorRT optimization 

parameters. Adjusting these or refining the NN structure should potentially reduce inference time further, a direction worth 

exploring in future work. Finally, it is important to note that no camera was connected to the Jetson, and no data transfer 

occurred during this baseline test, making the recorded inference times the lowest possible boundaries. 

3.3 Screen-based experiment 

In this experiment, the Basler camera is connected to the Jetson, and the system operates at maximum speed using the 

workflow shown in Figure 5 and the optimized NN configuration (FP16) discussed in Section 3.1. To efficiently test 

hardware, data flow, and performance without an optical bench, a PC monitor displays computed defocused images with 

known aberrations. The camera is equipped with a Basler Lens C23-1224-5m-P (12 mm focal length, f/2.4) for reimaging 

the monitor’s screen, maximizing SNR. Figure 7 illustrates the setup with the camera and its lens positioned near the 

screen displaying defocused aberrated images. This is a single pass test. Care was taken to avoid gamma compression and 

image processing artifacts. Camera gamma was disabled, and displayed images were pre-corrected to ensure linearity at 

the physical level (screen irradiance). This step is critical, as the IS-WFS used by AI4Wave is sensitive to irradiance levels. 

The defocused images are monochromatic calculations. 
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         Figure 7.  Screen-based experiment setup. The camera is connected to the Jetson via a USB3 cable, fitted  

         with a lens, and positioned in front of a monitor to image the defocused source with known aberrations displayed 

         on the monitor’s screen 

Table 3 summarizes the timing statistics for TensorRT FP16 floating-point format over 50,000 frames of 128×128 pixels 

at 12 bits with a 100 µs exposure. The sampling period, which defines the wavefront data rate, is primarily driven by 

processing latency for that exposure time, accounting for nearly 90% of it. Almost half of this latency is attributed to the 

camera's sensor readout and data transfer. A different camera choice should potentially reduce the sampling period by a 

few hundred microseconds. The NN inference time, which sets the lower bound for processing latency, constitutes about 

30% of the sampling period and approximately 45% of the processing latency. The mean NN inference time of 370 µs is 

around 110 µs higher than the value reported in Section 3.2, Table 2 (without a camera), likely due to Python’s real-time 

overhead and system management. These results demonstrate that a wavefront rate of 1kHz, or even higher, can be readily 

achieved using AI4Wave phase retrieval combined with a fast NN inference platform like the Jetson. The AI4Wave phase 

retrieval (IS_WFS) is fully deterministic, with runtime defined by NN feedforward computation, requiring no iterations or 

initial conditions, while the wavefront error accuracy is benchmarked offline with millions of samples, avoiding issues 

typically encountered by runtime non-linear optimization approaches.      

       

      Table 3. Basic timing statistics for TensorRT FP floating point format (50,000 frames). 

TensorRT FP16 format, exposure time = 100 µs mean standard deviation 

Frame rate, wavefront rate 1,091 Hz NA 

Sampling period 917 µs 129 µs 

Processing latency 817 µs NA 

NN inference 370 µs 44 µs 
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Next table 4 presents the wavefront error statistics for 5,000 defocused source images with various known aberrations, re-

imaged using the setup shown in Figure 7.  

  

  

  

  

  

  

 

 

 

 

             Table 4. Zernike coefficient error statistics (wave RMS) for 5,000 defocused sources, with known aberration, 

             re-imaged by the camera and its lens opened at f/2.4 

 

Overall, the mean and standard deviation results are very similar to those reported in the baseline test (section 3.2, table 2, 

no camera). Slight increases, below 0.01 wave RMS, are observed primarily in the defocus, oblique astigmatism, and 

vertical coma coefficients. These differences are expected and align with the lens's optical performance at f/2.4, as the 

camera objective lens was not calibrated off in the data. Also, some manual defocus error is likely present. However, the 

results remain well below the diffraction limit for a Strehl ratio of 0.8, which corresponds to 0.075 wave RMS. Below 

figure 8 shows an example, from left to right, the simulated image on the monitor, the camera-captured image, and the 

reconstructed image using Zernike coefficients inferred by the NN. The camera-captured image shows some contrast loss 

due to the camera objective lens's MTF limitations, but the NN provides a reliable estimation of the Zernike coefficients, 

as demonstrated by the reconstructed image. Noise and blur added to the synthetic samples used for NN training enhance 

robustness in the solution. 

 
Figure 8.  Example of an aberrated defocused source re-imaged by the camera (as shown in figure 7): from left to right, 

the simulated image on the monitor, the camera-captured image at the center, and the NN-reconstructed image using 

inferred Zernike coefficients. 

Zernike coefficient 

[wave RMS] 

 

 

mean 

 

standard deviation 

Defocus 0.0210 0.0160 

Vertical astigmatism 0.0089 0.0080 

Oblique astigmatism 0.0082 0.0078 

Horizontal coma 0.0058 0.0058 

Vertical coma 0.0130 0.0070 

Oblique trefoil 0.0041 0.0035 

Vertical trefoil 0.0061 0.0040 

Primary spherical 0.0034 0.0028 
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3.4 Double pass optical bench experiment 

In this experiment, a double-pass optical test bench shown in figure 9 measures the wavefront reflected by a flat mirror. A 

10 mW 637 nm laser illuminates the F/12.5 pupil via a 5 μm pinhole. To address apodization from the pinhole, variable 

Gaussian illumination profiles were modeled, with a -1.08 dB edge attenuation. Light reflects through a 2 μm tick 50:50 

pellicle to an achromat (25 mm dia., 300 mm FL, 24 mm aperture) and collimates for double-pass reflection. A Basler 

acA720-520um camera (728 × 544, 6.9 μm pixels, 12-bit) offset from the focal plane introduces defocus bias. Captured 

data feeds the NN to infer the 10 Zernike terms (table 1). 

 

 

 
 
Figure 9.  A double-pass optical test bench with a 10 mW 637 nm laser illuminates the f/12.5 pupil via a 5 μm pinhole. 

Light reflects through a 50:50 pellicle and achromat (24 mm aperture) before double-pass imaging onto a Basler acA720-

520um camera, offset for the required defocus bias for AI4Wave 

 

A thumbscrew located at 45° on the flat edge applies, on demand, mechanical stress, inducing some optical aberrations 

primarily in the form of astigmatism. The laser's power can be controlled from 0.1 mW to 10 mW, with a 3 mm beam 

diameter at the pinhole level. Consequently, the pinhole radiates approximately 30 nW at full power and ~3nW at 10% 

power (1 mW laser setting). In this double-pass configuration, less than 3% of the radiated power reaches the sensor, which 

at 637nm for 10% power is about 70 pW, or 220 photon per μs. Figure 10 below compares a raw image (left), captured 

with a 400 µs exposure time, 100% power setting (10 mW), and 24 dB camera analog gain, to a reconstructed image (right) 

generated using the 10 Zernike coefficients inferred by the NN from the raw image. No stress was applied to the mirror. 

                                

 
                                     Figure 10.  Comparison of raw vs reconstructed image, mirror unstressed 
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Eventually, the exposure time was reduced to the camera's minimum setting of 24 µs, with the laser power adjusted to 

10% (equivalent to 1 mW). To introduce controlled distortions, a thumbscrew (seen on figure 9, next to the flat mirror) 

was used to apply stress to the mirror at a 45° angle, inducing mainly an astigmatism like distortion. This experimental 

setup led to a noticeable drop in the signal-to-noise ratio (SNR), primarily due to increased shot noise on the defocused 

image caused by the reduced exposure time and lower photon count. Despite this low SNR, as shown in Figure 11, the 

neural network (NN) demonstrated remarkable robustness, effectively reconstructing the raw image and accurately 

retrieving the wavefront information. This performance highlights the NN's ability to handle low-SNR scenarios, 

validating its reliability for demanding optical applications under low illumination conditions. 
 

                                  

 
                                      Figure 11.  Comparison of raw vs reconstructed image at low intensity,  

                                      laser set a 10%. Mirror wrapped using the side thumbscrew. 

 

Figure 12 shows a screenshot, while Video 1 demonstrates the GUI on the Jetson platform, displaying live raw images, 

reconstructed images, Zernike coefficients, and a wavefront heat plot in real time. 

 

                                       

                                      Figure 12.  Real-time GUI running on the Jetson platform 
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Video 1.  Real-time GUI video on the Jetson platform at 1 kHz

http://dx.doi.org/10.1117/12.3043339.1 

4. CONCLUSIONS

This work has shown that the AI4Wave approach is a practical solution for high-speed image-space wavefront sensing 

systems. By relying entirely on synthetic, normalized data for training and leveraging optimized inference on off-the-shelf 

hardware like the NVIDIA Jetson module, the AI4Wave platform provides a deterministic, non-iterative solution for real-

time phase retrieval (wavefront and surface) measurement directly from image space, without requiring dedicated 

wavefront sensing hardware. Unlike traditional methods that rely on physical data or iterative optimization, AI4Wave 

provides essentially layout-independent performance, allowing for rapid deployment across diverse optical configurations. 

Its ability to handle large wavefront errors, achieve sub-millisecond processing, and operate with minimal hardware makes 

it a compelling tool for AO, optical metrology, and other demanding applications. Experimental results confirm its 

accuracy, repeatability, and speed under various conditions, including low SNR scenarios. With computational efficiency, 

scalability, and the unique capability to measure field-dependent wavefronts from a single image, AI4Wave offers a 

simple, ready-to-deploy solution for fast wavefront sensing, overcoming most of the traditional limitations while providing 

versatility for industrial and scientific applications. 
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