



# On Axis Guiding and Real Time Autofocus Solutions

## Southwest Astrophotography Seminar 2014

**Dr. Gaston Baudat** 

**Innovations Foresight, LLC** 



#### **Astro-photography challenges**



A target must stay still for successful long exposures. Accurate tracking and optimal focus are critical. A ½ arc" error is visible under good seeing conditions.

#### Common problems:



- Polar alignment, King's rate, ...
- Mount mechanic and periodic errors, ...
- Flexure(s), mirror/optics motions, ...
- Focus shifts with temperature, ...
- And more...



#### **Auto-guiding & periodic refocusing are often required!**



#### **Common tracking errors**



- <u>Periodic errors (PE):</u>

  PEC helps but not necessary enough.

  Active quiding is likely.
- Polar alignment error:

  Drift & field rotation.

  10 arc' error, f=2 m, t=5', fov=1°, @+35° elev.

  Trail=8 microns, or 0.83 arc".
- Flexure(s):
  OTA(s), mount, ..., difficult to track and fix.
  Active guiding may help (same optical axis)







#### **Common focus errors**



#### -Temperature changes:

OTA contraction , C11-Aluminium: ~350 $\mu$ m/ °C (0.014"/ °C). CFZ = +/-134  $\mu$ m @ F/10 -> focusing every °C or less with good seeing (+/-44  $\mu$ m @ 1/10  $\lambda$  error). Human hair Ø ~100 $\mu$ m. Mirror Radii: Optical powers, different thermal inertias.

- Mirror shift, flexure(s):

Mirror shifts with location or meridian flip. Alignment of optics may be altered.

Out of focus could lead to other aberrations





#### **Image quality: FWHM**



FWHM (Full Width at Half Maximum), correlated to PSF:

From space, diffraction limited (Airy disk)  $FWHM = 2 \cdot 10^4 \ \lambda / D \ arc''$  D = 0.3m,  $\lambda$ =550nm, -> 0.39 arc" (Rayleigh's limit)

From Earth, seeing limited (Gaussian like) FWHM = 0.5 to 3 arc"





#### **Image quality: Absolute Roundness**



#### ARDN = (Major FWHM - Minor FHWM) / (Major FWHM + Minor FWHM)

An ARDN < 0.1 (10%) is not perceived by human inspection

#### **Major axis**







## How much tracking error is too much?



## Rule of thumb: RMS tracking error < 1/4 FWHM<sub>seeing</sub>

Plane waves from distant point source

Turbulent layer in atmosphere Perturbed wavefronts

RMS tracking error v.s. seeing for a absolute roundness < 10% (Exposure > 1 second)

| Seeing    | Excellent | Good      | Average   | Poor      |
|-----------|-----------|-----------|-----------|-----------|
|           | 0.5 arc"  | 1.0 arc"  | 2.0 arc"  | 3.0 arc"  |
| RMS error | 0.13 arc" | 0.25 arc" | 0.50 arc" | 0.75 arc" |



#### How much focus error is too much?













Wave front error:

0 λ

 $\lambda/10$ 

 $\lambda/3$ 

FE  $\lambda/3$ : +/- 2.44 x F<sup>2</sup> x  $\lambda$  =CFZ (Rayleigh's limit, angular resolution)

FE for  $\lambda/10$ : +/- 0.8 x F<sup>2</sup> x  $\lambda$  =~1/3 CFZ



Rule of thumb: **Focus error**  $< \lambda/10$ 

| F/#<br>λ = 550 nm | F/3               | F/6               | F/8               | F/10               |
|-------------------|-------------------|-------------------|-------------------|--------------------|
| Focus error λ/10  | +/- 4 μ <b>m</b>  | +/- 16 μ <b>m</b> | +/- 28 μ <b>m</b> | +/- 44 μ <b>m</b>  |
| CFZ error λ/3     | +/- 12 μ <b>m</b> | +/- 48 μ <b>m</b> | +/- 86 μ <b>m</b> | +/- 134 μ <b>m</b> |



10/29/2014

## **On-Axis Guiding (ONAG®)**



9

#### **Concept:** Split incoming light (Visible v.s. NIR)

- Same scope, same aperture, no-flexure.
- Large field of view (on and off-axis).
- No rotation (same flat frames, stay in focus).
- Seeing effects significantly reduced in NIR.
- Allow for true real time auto-focus (SharpLock).









#### **ONAG® XT overview**



Multi-coated dichroic mirror: Laser aligned at factory

Weight: <800g (1.8 lbs)

Reflection (visible 350nm-750nm): >98% typical

Transmission (NIR 750nm-1800nm): >90% typical

X/Y stage exploration circle (guider): Ø 44mm (1.7")











## **Guiding in Near Infrared (NIR)**



#### The black body law describes star spectrums



> 75% main sequence stars surface temperatures < 3700°K (class M)





#### Star spectral classification

| Class | Surface T<br>°K | % of stars |
|-------|-----------------|------------|
| 0     | >33,000         | 0.00004    |
| В     | 10,000-33,000   | 0.13       |
| А     | 7,500-10,000    | 0.6        |
| F     | 6,000-7,500     | 3          |
| G     | 5,200-6,000     | 7.6        |
| K     | 3,700-5,200     | 12.1       |
| M     | <3,700          | 76.45      |



## **Black Body & Quantum Efficiency**



#### NIR guiding consideration:

## Star spectrum x Optical transfer function x Sensor efficiency \*\*Atmospheric extinction neglected\*\*





## **ONAG®** efficiency



#### Full spectrum (350 – 1000nm) v.s. ONAG NIR range (>750nm):

Efficiency = 
$$\frac{\text{Enery}_{Full} - \text{Energy}_{ONAG}}{\text{Power}_{Full}} \Big|_{T[°K]}$$

>75% main sequence stars T< 3700°K

>99% main sequence stars T< 6000°K



#### Guide scope versus ONAG:

80mm (3.2") guide scope versus C11 3.15<sup>2</sup>/(11<sup>2</sup>x0.89)=0.09x, loss=+2.6 mag ONAG: gain 1.5-2.6=-1.1 or 2.8x (worst case)

#### ONAG typical guide star magnitude:

Scope: C11 @ F/10

Guiding: ONAG® & SX-Lodestar - 1 second

Guide star typical magnitude: 9th



## SharpLock Overview



SharpLock leverages the ONAG technology for providing the only real time auto-focus in the market:

- Continually maintains critical focus without any interruptions in imaging operations. Scope remains on target.
- Uses the guide star images for focus directionality & quality assessments while auto-guiding.





## **Guide star profile**



#### Guide star a best focus:









## Out of focus guide star



The star shape is function of focus position (in, out focus). SharpLock retrieves focus directionally from shape analysis.







- 400  $\mu m$  from best focus

at best focus

+ 400 µm from best focus



## **SharpLock** Optical concept





Guide star shapes versus best focus offsets



#### **Relative Roundness**



#### RRDN = (1<sup>st</sup> FWHM - 2<sup>nd</sup> FWHM) / (1<sup>st</sup> FWHM + 2<sup>nd</sup> FWHM) x 100 [%]

- RRDN carries directionality information (signed).
- 1st & 2nd axes are defined during the SharpLock calibration.
- They are reference axes related to the guider camera frame.







## **SharpLock** Transfer function



#### Relationship between focuser position and guide star roundness



Guide star offset from best focus [µm]



## Focus shift analysis with SharpLock



- 10" RCT F/8, carbon fiber OTA + fans, absolute focuser.
- One hour temperature stabilization period.
- Target near the zenith (no mount pier flip, same side).



Time [minute]

Focus changed up to 20  $\mu$ m/minute (F/8 CFZ=+/-86 $\mu$ m )!



## Periodic refocusing versus SharpLock side by side



CCDAP, same scopes, mounts, time & location. Credit Frank Colosimo





# Periodic refocusing v.s. *SharpLock* M82 - 27 March 2014



Location: Blue Mountain Vista Observatory, New Ringgold PA (USA)

Scopes/Mounts: Hyperion 12.5" F/8 (same model) / PME

Imager #1: SBIG STL-11000,  $9x9\mu m$ , periodic focus (every filter or 30')

24 frames (LRGB): 4h46' ~ 12' per frame (include periodic focus)

Imager #2: Apogee U8300, 11x11μm, ONAG + SharpLock

28 frames (LRGB): 4h22" ~ 9' per frame (no interruption)

Saving: 2.6' per frame, total for 28 frames = 1h13' or 27%



#### **Periodic focus**

Stacked FWHM in arc"

L: 2.3 R: 2.5

G: 2.5

B: 2.6



#### ONAG + SharpLock

Stacked FWHM in arc"

L: 2.4

R: 2.2

G: 2.2

B: 2.4



## SharpLock demonstration bench



80mm F/6.25 refractor + OPTEC absolute focuser + ONAG XT:

- Imager port with an artificial star, guider port with a guiding camera.
- Flat mirror reflecting back the artificial star image toward the guider.





## Thank you!





Clear skies!